

QUAL2K WORKSHOP: INTRODUCTION* Steve Chapra Tufts University

Rationale and Overview Segmentation and Hydraulics

* Abbreviated for Region 6 Modeling Workshop, November 2013, by Robert Ambrose

QUAL2K

Steady-state, 1-D <u>Mainstem River</u>

 Fast C (BOD), Slow C (BOD), organic N, NH3, NO3, organic P, SRP, oxygen, phytoplankton, <u>FIXED PLANTS</u>, suspended solids, conservative/color

Heat budget

 Point and distributed loads and abstractions

QUAL2K Software environment and interface Model segmentation Carbon speciation Anoxia and denitrification Sediment-water interactions Bottom plants Light extinction 🏶 pH Pathogens

QUAL2K Documentation

The Mystic River at Medford, MA

Steve Chapra, Greg Pelletier and Hua Tao December 16, 2008

Chapra, S.C., Pelletier, G.J. and Tao, H. 2008, QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality, Version 2.11: Documentation and Users Manual. Civil and Environmental Engineering Dept., Tufts University, Medford, MA, Steven. Chapra@tufts.edu

$Q_i = Q_{i-1} + Q_{in,i} - Q_{ab,i}$

WHAT HAPPENS WHEN YOU ADD FLOW TO A SLOPING CHANNEL?

The water velocity and depth increase

Given Q_{outflow}, compute depth (*H*) and velocity (*U*): • Continuity and Manning equation

Rating Curves

RATING CURVES $U = 0.0279 Q^{0.5652}$ $H = 1.6487 Q^{0.1622}$ 10 Ţ *H*(m) U(m/s)Q (m³/s) Q (m³/s) 0.1 500 100 500 100

LONGITUDINAL DISPERSION

QUAL2K WORKSHOP: TEMPERATURE MODELING

Heat Balance
Surface Heat Flux
Meteorological Data
Air-Water Converter
Sediment Heat Flux

SURFACE HEAT BALANCE

DAILY SOLAR RADIATION

SEDIMENT HEAT BUDGET T_i $T_{s,i}$

 $\frac{dT_{s,i}}{dT_{s,i}} =$ $\frac{dt}{\rho C_{p}H_{si}}$ $J_{s,i} = \frac{\alpha_s}{H_s} (T_i - T_{si})$

Q2K WATER QUALITY

Variable	Symbol	Units*
Conductivity	S	μmhos
Inorganic suspended solids	m _i	mgD/L
Dissolved oxygen	0	mgO ₂ /L
Slowly reacting CBOD	C _s	mgO ₂ /L
Fast reacting CBOD	C _f	mgO ₂ /L
Organic nitrogen	n _o	μgN/L
Ammonia nitrogen	n _a	μgN/L
Nitrate nitrogen	n	μgN/L
Organic phosphorus	p _o	μgP/L
Inorganic phosphorus	<i>p</i> ;	μgP/L
Phytoplankton	a _n	μgA/L
Phytoplankton nitrogen	IN_{n}	μgN/L
Phytoplankton phosphorus	IP_{n}^{\prime}	μgP/L
Detritus	m	mgD/L
Pathogen	X	cfu/100 mL
Alkalinity	Alk Alk	mgCaCO ₃ /L
Total inorganic carbon	<i>c</i> _T	mole/L
Bottom algae biomass		mgA/m ²
Bottom algae nitrogen	IN	mgN/m ²
Bottom algae phosphorus		mgP/m ²
Constituent i		
Constituent ii		
Constituent iii		

PHYTOPLANKTON AND DETRITUS STOICHIOMETRY: The "Redfield Ratio"

D : C : N : P : A

100% : 40% : 7.2% : 1% : 0.5-2.0%

	A	В	С	D	
1	QUAL2K				
2	Stream Water Quality Model				
3	Streeter River (8/15/2002)				
4	Water Column Rates				
5					
6					
7	Parameter V	alue	Units	Symbol	
8	Stoichiometry:				
9	Carbon	40	mgC		
10	Nitrogen	7.2	mgN		
11	Phosphorus	1	mgP		
12	Dry weight	100	mgD		
13	Chlorophyll	1	mgA		

Q2K

CHEMISTRY AND pH MODELING

 Mass Balance versus Chemical Equilibria Models
 Chemistry 101
 Ammonia-Ammonium Acid Base
 pH Modeling

Developed by Steve Chapra for 2004 OUAL 2K Workshop (Some slides have been updated) **THE CHEMISTRY PERSPECTIVE: AMMONIA ACID-BASE EQUILIBRIUM**

$NH_4^+ \longrightarrow NH_3 + H^+$

$k_f[\mathrm{NH}_4^+] = k_b[\mathrm{NH}_3][\mathrm{H}^+]$

Q2K PLANTS

Phytoplankton

Stationary or
Attached Plants

t, d

Incorporating Limits to Growth

 $\frac{da}{dt} = k_g a$ dt atif $a = a_0$ at t = 0 $a = a_o e^{k_g t}$ 10 100 a, mg m⁻³ 4.85x10⁸ 7.2x10⁸⁶ 1 7.8 $\frac{da}{dt} = k_g(T, N, I)a - k_d a$ $k_g(T, N, I) = k_{g,T} \phi_N \phi_L$

temperature nutrients light

TEMPERATURE DEPENDENCY

Light Response Models for Plant Growth

Saturation (Michaelis-Menten) Model:

 $\phi_{\ell} = \frac{I}{k_{si} + I}$

Photoinhibition Model:

$$\phi_{\ell} = \frac{I}{I_s} e^{1 - \frac{I}{I_s}}$$

SmithModel:

$$\phi_{\ell} = \frac{I}{\sqrt{I^2 + I_k^2}}$$

STATIONARY OR "ATTACHED" PLANTS

Overview Simple Periphyton Modeling Macrophytes

Differences between fixed and floating plants

	Floating	Attached	
Transport	Yes	No	
Types Units	Diatoms Greens Blue Greens mgchl a/m ³	Periphyton Filamentous Algae Rooted Macrophytes gD/m ² or mgA/m ²	
Light Predation	Average Water Column Zooplankton	Bottom Light Insect Larvae, Snails, etc.	
Substrate	Not an issue	Rock vs. Mud	

Functional Groups

 Periphyton: algae attached to and living upon submerged solid surfaces
 Diatoms, Greens, Blue Greens

Filamentous Algae
 Cladophora

Macrophytes: Vascular, Rooted Plants
Myriophyllum, Elodea, Potamogeton

EFFECT OF LIGHT ON PERIPHYTON

(a) floating plants

(b) periphyton

Macrophytes

- Vascular, Rooted Plants
- Myriophyllum, Elodea, Potamogeton (Water milfoil) (Waterweed) (Pondweed Oxygen weed)
- Lakes/Slow-moving streams/shallow rivers
- Can extend up into water column
- Can get nutrients from roots

Q2K

SEDIMENT/WATER INTERACTIONS

Sediment Oxygen Demand
 Methane Bubble Formation
 Diffusion/Reaction Competition
 Numerical Methods

SEDIMENT-WATER PROCESSES "THE MISSING LINK OF WATER-QUALITY MODELLING"

TYPICAL SOD VALUES

	<i>S</i> ['] _{<i>B</i>,20} (g m ⁻² d ⁻¹)	
Bottom type and location	Average value	Range
<i>Sphaerolitus</i> (10 g dry wt/m ²)	7	_)
Zebra Mussels (6000 individuals/m ²)	5	_
Municipal sewage sludge		
outfall vicinity	4	2-10
downstream of outfall, "aged"	1.5	1-2
Estuarine mud	1.5	1-2
Sandy bottom	0.5	0.2-1
Mineral soils	0.07	0.05-1
Areal hypolimnetic oxygen demand		0.06-2
(AHOD) lakes		

THE "SQUARE-ROOT" RELATIONSHIP OF SEDIMENT OXYGEN DEMAND AND OVERENRICHMENT

 $SOD = \alpha COD^{0.5}$

WHERE DOES NONLINEARITY COME FROM?

Loss of carbon as methane gas in anaerobic sediments

Competition between reaction and diffusion in aerobic surface sediment

CALIBRATION

Seems like a lot of parameters For steady state, really only three

***** Mass transfer, v_{d01} ***** Reaction rates, $k_{n1} + k_{c1}$

New QUAL2KW Versions

Available from Washington Ecology:

http://www.ecy.wa.gov/programs/eap/models.html

Version 5

- Repeating diel simulation
- Updated user manual
- Version 6
 - Kinematic wave flow routing
 - Fully dynamic for flow and other boundary conditions up to 365 days

Boulder Creek Example available in Q2K version 2_11b8

Boulder Creek Example

Create a folder: C:/Q2K
Unzip Q2K*.zip in this folder
Files Q2KMaster*.xls and q2kfortran*.exe should be in this folder
Create a folder: C:/Q2K/DataFiles

Boulder Creek Example

Launch Q2KMaster.xls

Change Saved File Name to Boulder Creek

Change Directory where file stored to C:/Q2K/DataFiles

Click Run Fortran button